Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Neuroscience Bulletin ; (6): 1007-1016, 2018.
Article in English | WPRIM | ID: wpr-775489

ABSTRACT

Exploring the transition from inter-ictal to ictal epileptiform discharges (IDs) and how GABA receptor-mediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment. We used Mg-free artificial cerebrospinal fluid (ACSF) to induce epileptiform discharges in juvenile mouse hippocampal slices and used a micro-electrode array to record the discharges. After the slices were exposed to Mg-free ACSF for 10 min-20 min, synchronous recurrent seizure-like events were recorded across the slices, and each event evolved from inter-ictal epileptiform discharges (IIDs) to pre-ictal epileptiform discharges (PIDs), and then to IDs. During the transition from IIDs to PIDs, the duration of discharges increased and the inter-discharge interval decreased. After adding 3 μmol/L of the GABA receptor agonist muscimol, PIDs and IDs disappeared, and IIDs remained. Further, the application of 10 μmol/L muscimol abolished all the epileptiform discharges. When the GABA receptor antagonist bicuculline was applied at 10 μmol/L, IIDs and PIDs disappeared, and IDs remained at decreased intervals. These results indicated that there are dynamic changes in the hippocampal network preceding the onset of IDs, and GABA receptor activity suppresses the transition from IIDs to IDs in juvenile mouse hippocampus.


Subject(s)
Animals , Male , Mice , Animals, Newborn , Bicuculline , Pharmacology , Disease Models, Animal , Epilepsy , Pathology , GABA-A Receptor Agonists , Pharmacology , GABA-A Receptor Antagonists , Therapeutic Uses , Hippocampus , Metabolism , In Vitro Techniques , Magnesium , Metabolism , Pharmacology , Membrane Potentials , Mice, Inbred C57BL , Muscimol , Pharmacology , Nerve Net , Receptors, GABA-A , Metabolism
2.
The Korean Journal of Physiology and Pharmacology ; : 27-36, 2017.
Article in English | WPRIM | ID: wpr-728260

ABSTRACT

Angelicae Gigantis Radix (AGR, Angelica gigas) has been used for a long time as a traditional folk medicine in Korea and oriental countries. Decursinol angelate (DCA) is structurally isomeric decursin, one of the major components of AGR. This study was performed to confirm whether DCA augments pentobarbital-induced sleeping behaviors via the activation of GABA(A)-ergic systems in animals. Oral administration of DCA (10, 25 and 50 mg/kg) markedly suppressed spontaneous locomotor activity. DCA also prolonged sleeping time, and decreased the sleep latency by pentobarbital (42 mg/kg), in a dose-dependent manner, similar to muscimol, both at the hypnotic (42 mg/kg) and sub-hypnotic (28 mg/kg) dosages. Especially, DCA increased the number of sleeping animals in the sub-hypnotic dosage. DCA (50 mg/kg, p.o.) itself modulated sleep architectures; DCA reduced the counts of sleep/wake cycles. At the same time, DCA increased total sleep time, but not non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. In the molecular experiments. DCA (0.001, 0.01 and 0.1 µg/ml) increased intracellular Cl- influx level in hypothalamic primary cultured neuronal cells of rats. In addition, DCA increased the protein expression of glutamic acid decarboxylase (GAD(65/67)) and GABA(A) receptors subtypes. Taken together, these results suggest that DCA potentiates pentobarbital-induced sleeping behaviors through the activation of GABA(A)-ergic systems, and can be useful in the treatment of insomnia.


Subject(s)
Animals , Rats , Administration, Oral , Angelica , Electroencephalography , Eye Movements , Glutamate Decarboxylase , Korea , Medicine, Traditional , Motor Activity , Muscimol , Neurons , Pentobarbital , Receptors, GABA-A , Rodentia , Sleep Initiation and Maintenance Disorders , Sleep, REM
3.
The Korean Journal of Physiology and Pharmacology ; : 65-74, 2017.
Article in English | WPRIM | ID: wpr-728256

ABSTRACT

Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta (IL-1β) (1 ng/10 µL) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A (GABAA) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the IL-1β-induced mechanical allodynia. In the control group, application of GABA (100 µM) or muscimol (3 µM) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the IL-1β-treated rats. These results suggest that some large myelinated Aβ fibers gain access to the nociceptive system and elicit pain sensation via GABA(A) receptors under inflammatory pain conditions.


Subject(s)
Animals , Humans , Male , Rats , Bicuculline , Bumetanide , Capsaicin , gamma-Aminobutyric Acid , Gramicidin , Hyperalgesia , Injections, Subcutaneous , Interleukin-1beta , Membranes , Muscimol , Myelin Sheath , Neurons , Nociceptors , Rats, Sprague-Dawley , Receptors, GABA-A , Sensation
4.
Braz. j. pharm. sci ; 51(1): 213-219, Jan-Mar/2015. tab, graf
Article in English | LILACS | ID: lil-751361

ABSTRACT

In the present work, acid dissociation constant (pKa) values of muscimol derivatives were calculated using the Density Functional Theory (DFT) method. In this regard, free energy values of neutral, protonated and deprotonated species of muscimol were calculated in water at the B3LYP/6-31G(d) basis sets. The hydrogen bond formation of all species had been analyzed using the Tomasi's method. It was revealed that the theoretically calculated pKa values were in a good agreement with the existing experimental pKa values, which were determined from capillary electrophoresis, potentiometric titration and UV-visible spectrophotometric measurements.


No presente trabalho, calculou-se a constante de dissociação do ácido (pKa) dos derivados de muscimol, utilizando-se o método da teoria do funcional de densidade (DFT). Com esse objetivo, calcularam-se os valores das espécies neutra, protonada e desprotonada do muscimol em água em base B3LYP/6-31G(d). A formação da ligação de hidrogênio de todas as espécies foi analisada utilizando o método de Tomasi. Demonstrou-se que os valores de pKa calculados teoricamente estavam em boa concordância com os valores experimentais disponíveis, determinados por eletroforese capilar, titulação potenciométrica e medidas por espectrofotometria UV-visível.


Subject(s)
Dissolution , Muscimol/analysis , Hydrogen Bonding
5.
Natural Product Sciences ; : 219-225, 2015.
Article in English | WPRIM | ID: wpr-221413

ABSTRACT

In the previous experiments, we reported that ethanol extract of Gastrodiae Rhizoma, the dried tuber of Gastrodia ElataBlume (Orchidaceae) increased pentobarbital-induced sleeping behaviors. These experiments were undertaken to know whether 4-hydroxybenzaldehyde (4-HBD), is one of the major compounds of Gastrodiae Rhizoma increases pentobarbital-induced sleeping behaviors and changes sleep architectures via activating GABA(A)-ergic systems in rodents. 4-HBD decreased locomotor activity in mice. 4-HBD increased total sleep time, and decreased of sleep onset by pentobarbital (28 mg/kg and 40 mg/kg). 4-HBD showed synergistic effects with muscimol (a GABA(A) receptor agonist), shortening sleep onset and enhancing sleep time on pentobarbital-induced sleeping behaviors. On the other hand, 4-HBD (200 mg/kg, p.o.) itself significantly inhibited the counts of sleep-wake cycles, and prolonged total sleep time and non-rapid eye movement (NREM) in rats. Moreover, 4-HBD increased intracellular Cl- levels in the primary cultured cerebellar cells. The protein levels of glutamic acid decarboxylase (GAD) and GABA(A) receptors subunits were over-expressed by 4-HBD. Consequently, these results demonstrate that 4-HBD increased NREM sleep as well as sleeping behaviors via the activation of GABA(A)-ergic systems in rodents.


Subject(s)
Animals , Mice , Rats , Ethanol , Eye Movements , Gastrodia , Glutamate Decarboxylase , Hand , Motor Activity , Muscimol , Pentobarbital , Receptors, GABA-A , Rodentia
6.
International Journal of Oral Biology ; : 117-125, 2015.
Article in Korean | WPRIM | ID: wpr-41787

ABSTRACT

The present study investigated the role of central GABA(A) and GABA(B) receptors in orofacial pain in rats. Experiments were conducted on Sprague-Dawley rats weighing between 230 and 280 g. Intracisternal catheterization was performed for intracisternal injection, under ketamine anesthesia. Complete Freund's Adjuvant (CFA)-induced thermal hyperalgesia and inferior alveolar nerve injury-induced mechanical allodynia were employed as orofacial pain models. Intracisternal administration of bicuculline, a GABA(A) receptor antagonist, produced mechanical allodynia in naive rats, but not thermal hyperalgesia. However, CGP35348, a GABA(B) receptor antagonist, did not show any pain behavior in naive rats. Intracisternal administration of muscimol, a GABA(A) receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. On the contrary, intracisternal administration of bicuculline also attenuated the mechanical allodynia in rats with inferior alveolar nerve injury. Intracisternal administration of baclofen, a GABA(B) receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. In contrast to GABA(A) receptor antagonist, intracisternal administration of CGP35348 did not affect either the thermal hyperalgesia or mechanical allodynia. Our current findings suggest that the GABA(A) receptor, but not the GABA(B) receptor, participates in pain processing under normal conditions. Intracisternal administration of GABA(A) receptor antagonist, but not GABA(B) receptor antagonist, produces paradoxical antinociception under pain conditions. These results suggest that central GABA has differential roles in the processing of orofacial pain, and the blockade of GABA(A) receptor provides new therapeutic targets for the treatment of chronic pain.


Subject(s)
Animals , Rats , Anesthesia , Baclofen , Bicuculline , Catheterization , Catheters , Chronic Pain , Facial Pain , Freund's Adjuvant , gamma-Aminobutyric Acid , Hyperalgesia , Ketamine , Mandibular Nerve , Muscimol , Nociception , Rats, Sprague-Dawley , Receptors, GABA , Receptors, GABA-A
7.
Scientific Journal of Kurdistan University of Medical Sciences. 2014; 19 (4): 46-57
in Persian | IMEMR | ID: emr-153685

ABSTRACT

Adrenergic and GABAergic systems of the brain play important roles in learning and memory. Previous studies have shown that morphine, histamine and lithium can induce state dependent learning. In the present study we evaluated, the effects of alpha 1-adrenergic receptor of CA1 on muscimol state-dependent learning in mice. Material and In this experimental study adult male NMRI mice were used. The animals were anaesthetized and bilateral implantation of cannula in the CA1 regions of the dorsal hippocampus was performed by using stereotaxic method. Seven days after recovery, we used inhibitory avoidance task for behavioral testing. Data were analyzed by Kruskal-Wallis nonparametric one-way analysis of variance followed by Mann-Whitney test. Pre-training or pre-test intra-CA1 injection of muscimol impaired inhibitory avoidance memory on the test day [P<0.01]. Pre-test injection of muscimol reversed the memory impairment induced by pre-training muscimol injection [P<0.001]. Pre-test intra-CA1 injection of phenylephrine also reversed pre-training muscimol induced amnesia [P<0.01]. Pre-test intra-CA1 injection of prazosin 2 min before administration of the effective dose of muscimol inhibited muscimol state dependent memory [P<0.01]. It can be concluded that the alpha 1-adrenergic receptors of the CA1 may play an important role in the muscimol state dependent learning, on the test day


Subject(s)
Animals, Laboratory , Learning , Hippocampus , CA1 Region, Hippocampal , Muscimol , Mice
8.
Biomolecules & Therapeutics ; : 314-320, 2014.
Article in English | WPRIM | ID: wpr-199230

ABSTRACT

This study was investigated to know whether pachymic acid (PA), one of the predominant triterpenoids in Poria cocos (Hoelen) has the sedative-hypnotic effects, and underlying mechanisms are mediated via gamma-aminobutyric acid (GABA)-ergic systems. Oral administration of PA markedly suppressed locomotion activity in mice. This compound also prolonged sleeping time, and reduced sleep latency showing synergic effects with muscimol (0.2 mg/kg) in shortening sleep onset and enhancing sleep time induced by pentobarbital, both at the hypnotic (40 mg/kg) and sub-hypnotic (28 mg/kg) doses. Additionally, PA elevated intracellular chloride levels in hypothalamic primary cultured neuronal cells of rats. Moreover, Western blotting quantitative results showed that PA increased the amount of protein level expression of GAD65/67 over a broader range of doses. PA increased alpha- and beta-subunits protein levels, but decreased gamma-subunit protein levels in GABA(A) receptors. The present experiment provides evidence for the hypnotic effects as PA enhanced pentobarbital-induced sleeping behaviors via GABA(A)-ergic mechanisms in rodents. Taken together, it is proposed that PA may be useful for the treatment of sleep disturbed subjects with insomnia.


Subject(s)
Animals , Mice , Rats , Administration, Oral , Blotting, Western , Cocos , gamma-Aminobutyric Acid , Hypnotics and Sedatives , Locomotion , Muscimol , Neurons , Pentobarbital , Poria , Receptors, GABA-A , Rodentia , Sleep Initiation and Maintenance Disorders
9.
IJPR-Iranian Journal of Pharmaceutical Research. 2013; 12 (2): 407-413
in English | IMEMR | ID: emr-142662

ABSTRACT

The objective of the present investigation was to assess the possible involvement of GABAergic mechanism in analgesic effect of aqueous extract of Origanum Vulgare [ORG] in a rat model of acute pain test. Sixty-three anaesthetized male Wistar rats [200-250 g] were cannulated into the left ventricle. Five to seven days after the recovery from surgery, ORG extract was intraventricularly injected at dose of 3 ?g/rat i.c.v. Then, baclofen [10 mg/Kg, IP], CGP35348 [100 nmol/Kg, i.c.v], muscimol [1 mg/Kg IP] and bicuculline [5 mg/Kg IP] were separately injected 20 min before the injection of ORG. The experimental groups were compared with intact [control] group [n = 7]. The response latency of rats to thermal stimulation was recorded using Tail-Flick test. Injection of ORG extract resulted in a significant and dose-dependent increase in the response latency. There was also a significant increase in the response latency after co-administration of ORG extract with baclofen when compared with control group. However, following co-administration of ORG extract/bicuculline, a significant decrease in the response latency was observed compared to control group. In conclusion, the results of the present study suggest that aqueous extract of Origanum vulgare L. ssp. viridis possesses antinociceptive activity in a dose-dependent manner and ORG-induced antinociception might be mediated, at least in part, by both GABA receptors


Subject(s)
Male , Animals, Laboratory , Pain Threshold/drug effects , Receptors, GABA-B/drug effects , Receptors, GABA , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , gamma-Aminobutyric Acid , Bicuculline/pharmacology , Muscimol/pharmacology , Rats, Wistar , Plant Extracts/pharmacology
10.
Scientific Journal of Kurdistan University of Medical Sciences. 2012; 17 (3): 1-10
in Persian | IMEMR | ID: emr-155792

ABSTRACT

Due to overlapping distribution of GABA receptors with nicotinic receptors in some parts of brain such as dorsal hippocampus, the functional interactions between nicotinic acetylcholine and GABA ergic systems in cognitive control seems possible. The present study evaluated the possible role of nicotinic receptors of the dorsal hippocampus in muscimol [the GABA[A] receptor agonist] induced amnesia and muscimol state-dependent memory in adult male mice. This experimental study included 185 adult male NMRI mice. The drugs used in this study were muscimol and nicotine. The mice were anaesthetized and placed into a stereotaxic apparatus. Cannulas were implanted bilaterally in the CA1 regions of the dorsal hippocampus. After a seven day recovery period, the behavioral testing was performed by using inhibitory avoidance task. Prolongation of the step-down latency was measured as a criterion for the assessment of memory retention. Post-training administration of muscimol [0.15 and 0.075 micro g/mouse] decreased the memory retrieval. The memory impairment induced by muscimol [0.15micro g/mouse] was completely reversed by administration of muscimol or nicotine [1.5 and 1 micro g/mouse] on the test day, which suggests muscimol, induced state-dependent memory. These results suggested that nicotinic receptors of the dorsal hippocampus may play an important role in muscimol -induced amnesia and muscimol state-dependent memory


Subject(s)
Animals, Laboratory , Muscimol , Memory , Avoidance Learning , Amnesia , Hippocampus , Mice
11.
Experimental Neurobiology ; : 23-29, 2012.
Article in English | WPRIM | ID: wpr-155508

ABSTRACT

The medial prefrontal cortex (mPFC) has been implicated in the processing of emotionally significant stimuli, particularly the inhibition of inappropriate responses. We examined the role of the mPFC in regulation of fear responses using a differential fear conditioning procedure in which the excitatory conditioned stimulus (CS+) was paired with an aversive footshock and intermixed with the inhibitory conditioned stimulus (CS-). In the first experiment, using rats as subjects, muscimol, a gamma-amino-butyric acid type A (GABAA) receptor agonist, or artificial cerebrospinal fluid (aCSF) was infused intracranially into the mPFC across three conditioning sessions. Twenty-four hours after the last conditioning session, freezing response of the rats was tested in a drug-free state. Neither the muscimol nor the aCSF infusion had any effect on differential responding. In the second experiment, the same experimental procedure was used except that the infusion was made before the testing session rather than the conditioning sessions. The results showed that muscimol infusion impaired differential responding: the level of freezing to CS- was indiscriminable from that to CS+. Taken together, these results suggest that the mPFC is responsible for the regulation of fear response by inhibiting inappropriate fear expressions.


Subject(s)
Animals , Rats , Freezing , Muscimol , Prefrontal Cortex
12.
Acta Pharmaceutica Sinica ; (12): 534-538, 2011.
Article in Chinese | WPRIM | ID: wpr-348923

ABSTRACT

.This study is to investigate the analgesic effect produced by intrathecal injection (ith) of oxysophoridine (OSR) and the mechanism of GABAA receptor. Warm water tail-flick test was used to detect the analgesic effect of OSR (12.5, 6.25, and 3.13 mg.kg-1 ith) and to observe the influence of GABA (gamma aminobutyric acid) agonist or antagonist on the analgesic effect of OSR in mice. Immunohistochemistry method were used to detect the influence of OSR (12.5 mg.kg-1, ith) on the GABAARalpha1 protein expression in spinal cord. The results obtained covers that OSR (12.5 and 6.25 mg.kg-, ith) alleviates pain significantly with the warm water tail-flick test (P<0.05, P<0.01), the rate of pain threshold increases by 68.45%; GABA and muscimol (MUS) produces analgesic synergism together with the OSR, picrotoxin (PTX) and bicuculline (BIC) antagonize the analgesic effect of OSR; OSR (12.5 mg.kg-1, ith) significantly increase the positive number of GABAARalpha1 nerve cell in spinal cord (P<0.01) and significantly decrease the average grey levels (P<0.01). In conclusion, OSR intrathecal injection has significant analgesic effect. And GABAA receptor in spinal cord is involved in the analgesic mechanism.


Subject(s)
Animals , Female , Male , Mice , Alkaloids , Pharmacology , Analgesics , Pharmacology , Bicuculline , Pharmacology , GABA-A Receptor Agonists , Pharmacology , GABA-A Receptor Antagonists , Pharmacology , Injections, Spinal , Muscimol , Pharmacology , Pain Threshold , Picrotoxin , Pharmacology , Random Allocation , Receptors, GABA-A , Metabolism , Spinal Cord , Metabolism , gamma-Aminobutyric Acid , Pharmacology
13.
Journal of Korean Medical Science ; : 1371-1377, 2011.
Article in English | WPRIM | ID: wpr-127686

ABSTRACT

Glycine and gamma-aminobutyric acid (GABA) are localized and released by the same interneurons in the spinal cord. Although the effects of glycine and GABA on analgesia are well known, little is known about the effect of GABA in strychnine-induced hyperalgesia. To investigate the effect of GABA and the role of the glycine receptor in thermal hyperalgesia, we designed an experiment involving the injection of muscimol (a GABAA receptor agonist), baclofen (a GABAB receptor agonist) or glycine with strychnine (strychnine sensitive glycine receptor antagonist). Glycine, muscimol, or baclofen with strychnine was injected into the cisterna magna or lumbar subarachnoidal spaces of mice. The effects of treatment on strychnine-induced heat hyperalgesia were observed using the pain threshold index via the hot plate test. The dosages of experimental drugs and strychnine we chose had no effects on motor behavior in conscious mice. Intracisternal or intrathecal administration of strychnine produced thermal hyperalgesia in mice. Glycine antagonize the effects of strychnine, whereas, muscimol or baclofen does not. Our results indicate that glycine has anti-thermal hyperalgesic properties in vivo; and GABA receptor agonists may lack the binding abilities of glycine receptor antagonists with their sites in the central nervous system.


Subject(s)
Animals , Male , Mice , Baclofen/administration & dosage , Drug Delivery Systems , GABA Agonists/administration & dosage , GABA Antagonists/administration & dosage , Glycine/administration & dosage , Hot Temperature , Hyperalgesia/chemically induced , Injections, Spinal , Mice, Inbred ICR , Muscimol/administration & dosage , Pain Threshold , Random Allocation , Strychnine , gamma-Aminobutyric Acid/metabolism
14.
Braz. j. med. biol. res ; 43(9): 869-873, Sept. 2010. ilus
Article in English | LILACS | ID: lil-556857

ABSTRACT

The medial hypothalamus is part of a neurobiological substrate controlling defensive behavior. It has been shown that a hypothalamic nucleus, the dorsomedial hypothalamus (DMH), is involved in the regulation of escape, a defensive behavior related to panic attacks. The role played by the DMH in the organization of conditioned fear responses, however, is less clear. In the present study, we investigated the effects of reversible inactivation of the DMH with the GABA A agonist muscimol on inhibitory avoidance acquisition and escape expression by male Wistar rats (approximately 280 g in weight) tested in the elevated T-maze (ETM). In the ETM, inhibitory avoidance, a conditioned defensive response, has been associated with generalized anxiety disorder. Results showed that intra-DMH administration of the GABA A receptor agonist muscimol inhibited escape performance, suggesting an antipanic-like effect (P < 0.05), without changing inhibitory avoidance acquisition. Although a higher dose of muscimol (1.0 nmol/0.2 µL; N = 7) also altered locomotor activity in an open field when compared to control animals (0.2 µL saline; N = 13) (P < 0.05), the lower dose (0.5 nmol/0.2 µL; N = 12) of muscimol did not cause any motor impairment. These data corroborate previous evidence suggesting that the DMH is specifically involved in the modulation of escape. Dysfunction of this regulatory mechanism may be relevant in the genesis/maintenance of panic disorder.


Subject(s)
Animals , Male , Rats , Anxiety Disorders/physiopathology , GABA-A Receptor Agonists/pharmacology , Hypothalamus/drug effects , Muscimol/pharmacology , Panic Disorder/etiology , Panic Disorder/physiopathology , Anxiety Disorders/etiology , Escape Reaction/drug effects , Hypothalamus/physiopathology , Maze Learning/drug effects , Motor Activity/drug effects , Rats, Wistar
15.
Korean Journal of Anesthesiology ; : 76-86, 2010.
Article in English | WPRIM | ID: wpr-161425

ABSTRACT

BACKGROUND: The intrathecal (IT) administration of glycine or GABAA receptor antagonist result in a touch evoked allodynia through disinhibition in the spinal cord. Glycine is an inhibitory neurotransmitter that appears to be important in sensory processing in the spinal cord. This study was aimed to evaluate the effect of glycine-related amino acids on antagonizing the effects of IT strychnine (STR) or bicuculline (BIC) when each amino acid was administered in combination with STR or BIC. METHODS: A total of 174 male ICR mice were randomized to receive an IT injection of equimolar dose of glycine, betaine, beta-alanine, or taurine in combination with STR or BIC. Agitation in response to innocuous stimulation with a von Frey filament after IT injection was assessed. The pain index in hot-plate test were observed after it injection. The effect of it muscimol in combination with str or bic were also observed. RESULTS: The allodynia induced by STR was relieved by high dose of glycine or betaine. But, allodynia induced by BIC was not relieved by any amino acid. Whereas the STR-induced thermal hyperalgesia was only relieved by high dose of taurine at 120 min after IT injection, the BIC-induced one was relieved by not only high dose of taurine at 120 min but also low dose of glycine or betaine at 60 min after IT injection. The BIC-induced allodynia and thermal hyperalgesia was relieved by IT muscimol. CONCLUSIONS: This study suggests that IT glycine and related amino acids can reduce the allodynic and hyperalgesic action of STR or BIC in mice.


Subject(s)
Animals , Humans , Male , Mice , Amino Acids , beta-Alanine , Betaine , Bicuculline , Dihydroergotamine , Glycine , Hyperalgesia , Mice, Inbred ICR , Muscimol , Neurotransmitter Agents , Nitrogen Mustard Compounds , Spinal Cord , Strychnine , Taurine
16.
Braz. j. med. biol. res ; 42(1): 114-121, Jan. 2009. ilus
Article in English | LILACS | ID: lil-505427

ABSTRACT

We investigated the involvement of GABAergic mechanisms of the central amygdaloid nucleus (CeA) in unanesthetized rats subjected to acute isotonic or hypertonic blood volume expansion (BVE). Male Wistar rats bearing cannulas unilaterally implanted in the CeA were treated with vehicle, muscimol (0.2 nmol/0.2 µL) or bicuculline (1.6 nmol/0.2 µL) in the CeA, followed by isotonic or hypertonic BVE (0.15 or 0.3 M NaCl, 2 mL/100 g body weight over 1 min). The vehicle-treated group showed an increase in sodium excretion, urinary volume, plasma oxytocin (OT), and atrial natriuretic peptide (ANP) levels compared to control rats. Muscimol reduced the effects of BVE on sodium excretion (isotonic: 2.4 ± 0.3 vs vehicle: 4.8 ± 0.2 and hypertonic: 4.0 ± 0.7 vs vehicle: 8.7 ± 0.6 µEq·100 g-1·40 min-1); urinary volume after hypertonic BVE (83.8 ± 10 vs vehicle: 255.6 ± 16.5 µL·100 g-1·40 min-1); plasma OT levels (isotonic: 15.3 ± 0.6 vs vehicle: 19.3 ± 1 and hypertonic: 26.5 ± 2.6 vs vehicle: 48 ± 3 pg/mL), and ANP levels (isotonic: 97 ± 12.8 vs vehicle: 258.3 ± 28.1 and hypertonic: 160 ± 14.6 vs vehicle: 318 ± 16.3 pg/mL). Bicuculline reduced the effects of isotonic or hypertonic BVE on urinary volume and ANP levels compared to vehicle-treated rats. However, bicuculline enhanced the effects of hypertonic BVE on plasma OT levels. These data suggest that CeA GABAergic mechanisms are involved in the control of ANP and OT secretion, as well as in sodium and water excretion in response to isotonic or hypertonic blood volume expansion.


Subject(s)
Animals , Male , Rats , Amygdala/drug effects , Bicuculline/pharmacology , Blood Volume/drug effects , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , Muscimol/pharmacology , Amygdala/physiology , Atrial Natriuretic Factor/blood , Bicuculline/administration & dosage , Blood Volume/physiology , Diuresis/drug effects , Diuresis/physiology , GABA Agonists/administration & dosage , GABA Antagonists/administration & dosage , Muscimol/administration & dosage , Oxytocin/blood , Rats, Wistar , Sodium/urine
17.
Acta Physiologica Sinica ; (6): 99-107, 2009.
Article in English | WPRIM | ID: wpr-302475

ABSTRACT

In the present study, the correlated activities of adjacent ganglion cells of transient subtype in response to full-field white light stimulation were investigated in the chicken retina. Pharmacological studies and cross-correlation analysis demonstrated that application of the GABA(A) receptor antagonist bicuculline (BIC) significantly down-regulated the correlation strength while increasing the firing activities. Meanwhile, application of the GABA(A) receptor agonist muscimol (MUS) potentiated the correlated activities while decreasing the firing rates. However, application of the GABA(C) receptor antagonist (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) did not have a consistent influence on either the firing rates or the correlation strength. These results suggest that in the chicken retina, correlated activities among neighborhood transient ganglion cells can be increased while firing activities are reduced with the activation of GABA(A) receptors. The GABA(A)-receptor-mediated inhibitory pathway may be critical for improving the efficiency of visual information transmission.


Subject(s)
Animals , Mice , Action Potentials , Bicuculline , Pharmacology , GABA-A Receptor Antagonists , Pharmacology , Muscimol , Pharmacology , Phosphinic Acids , Pharmacology , Pyridines , Pharmacology , Receptors, GABA-A , Metabolism , Retina , Physiology , Retinal Ganglion Cells , Physiology , gamma-Aminobutyric Acid
18.
The Korean Journal of Physiology and Pharmacology ; : 469-473, 2009.
Article in English | WPRIM | ID: wpr-727455

ABSTRACT

Induced activation of the gamma-aminobutyric acidA (GABA(A)) receptor in the retina of goldfish caused the fish to rotate in the opposite direction to that of the spinning pattern during an optomotor response (OMR) measurement. Muscimol, a GABA(A) receptor agonist, modified OMR in a concentration-dependent manner. The GABA(B) receptor agonist baclofen and GABA(C) receptor agonist CACA did not affect OMR. The observed modifications in OMR included decreased anterograde rotation (0.01~0.03 micrometer), coexistence of retrograde rotation and decreased anterograde rotation (0.1~30 micrometer) and only retrograde rotation (100 micrometer~1 mM). In contrast, the GABA(A) receptor antagonist bicuculline blocked muscimolinduced retrograde rotation. Based on these results, we inferred that the coding inducing retrograde movement of the goldfish retina is essentially associated with the GABA(A) receptor-related visual pathway. Furthermore, from our novel approach using observations of goldfish behavior the induced discrete snapshot duration was approximately 573 ms when the fish were under the influence of muscimol.


Subject(s)
Baclofen , Bicuculline , Clinical Coding , Cytarabine , Goldfish , Injections, Intraocular , Muscimol , Receptors, GABA , Receptors, GABA-A , Retina , Visual Pathways
19.
Indian J Exp Biol ; 2008 Mar; 46(3): 159-63
Article in English | IMSEAR | ID: sea-57141

ABSTRACT

The effect of gabapentin has been investigated on acute hypoxic stress-induced behavioral alterations and oxidative damage in mice. Mice were subjected to hypoxia for 2 hr. Treatment with gabapentin (50 and 100 mg/kg) significantly increased ambulatory movements, exerted anti-anxiety like effect and reduced oxidative damage in mice subjected to acute hypoxic stress. Treatment with picrotoxin (1.0 mg/kg) per se had no significant effect on behavioral and biochemical parameters of stressed mice. Treatment with muscimol (0.05 mg/kg) per se significantly increased the locomotor activity of stressed mice, exerted significant anti anxiety effect and significantly reduced the oxidative damage. Further, pretreatment with picrotoxin (1.0 mg/kg) significantly blocked whereas pretreatment with muscimol (0.05 mg/kg) significantly potentiated the neuroprotective effect of gabapentin. These results suggest that gabapentin produces its neuroprotective effect in mice subjected to acute hypoxic stress through GABA(A) receptor mechanism.


Subject(s)
Amines/pharmacology , Analysis of Variance , Animals , Hypoxia/drug therapy , Brain/drug effects , Cyclohexanecarboxylic Acids/pharmacology , Lipid Peroxidation/drug effects , Mice , Motor Activity/drug effects , Muscimol/pharmacology , Oxidative Stress/drug effects , Picrotoxin/pharmacology , Spectrophotometry , gamma-Aminobutyric Acid/pharmacology
20.
Braz. j. med. biol. res ; 39(7): 945-955, July 2006. ilus
Article in English | LILACS | ID: lil-431562

ABSTRACT

Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 æL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 ± 2.7 and 3.8 ± 2.0 Hz, P < 0.05) and persisted until 10 min (11 ± 5.7 and 8.7 ± 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.


Subject(s)
Animals , Behavior, Animal/physiology , Bicuculline/pharmacology , Gymnotiformes/physiology , Mesencephalon/physiology , Muscimol/pharmacology , Behavior, Animal/drug effects , Bicuculline/administration & dosage , Defense Mechanisms , Drug Interactions/physiology , Electric Stimulation , Electric Organ/drug effects , Electric Organ/physiology , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , Microinjections , Mesencephalon/drug effects , Movement/drug effects , Movement/physiology , Muscimol/administration & dosage , Neural Pathways/drug effects , Neural Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL